

Biological Warfare Defense Systems

Amy E. Alving
Deputy Director
Special Projects Office

DARPATech 2000 6-8 September 2000

Chem/Bio Defense Activities

Component Technologies

- Detectors/ID
- Reporters
- Fluidics
- Collector materials
- Decon agents

Component Systems

Sensor systems

Filtration systems

Complete Defensive Systems

Building Protection

BWD Timeline

Intelligence & Warning

Building Protection

Threat:

- Focus is on protecting military buildings (C², barracks, ...) from:
 - attack by chem or bio warfare agents;
 - external or internal release.

Goal:

Make buildings far less attractive targets.

Approach:

 Reduce effectiveness of attack via dynamic response of HVAC (and other) infrastructure.

Objectives:

- Protect human inhabitants.
- Restore building to function, quickly.
- Preserve forensic evidence.

Example Building Protection Architecture

Normal Operation

- Clean air continuously.
- Increased biomass is suspicious.

Possible Attack

- Confirming sensors are slow.
- Take precautionary measures in interim.

Confirmed Attack

Full-scale response.

Post Event

- Clean up.
- Attribution.

Technology Development Investments

Neutralization

- Efficient uv sources
- Aerosol breakup
- Photosensitizing agents
- In-situ, toxic sprays

Filtration

- Low-∆p, high-efficiency filters
- Combined chem/bio filters
- Neutralizing filters

Decontamination

- Self-cleaning surfaces
- Nano-bombs/emulsions
- Sensors

Integrated System Experimentation & Demo

Systems design

- Strategies
- Architectures
- Trades
- Requirements

Systems implementation

- Full-scale testbed of end-to-end system
- Experimentation
- Model validation

Demonstration

 Demo protection at military facility

Systems challenges

- Interpreting sensor response
- Localization of release location
- Optimizing response options
- Robust control algorithms

- Containment of agent at source
- Side effects of neutralization techniques
- Auto calibration/rare-event readiness
- System dependence on threat, release style
- Modeling of component and system behavior and protection afforded

Building Protection Program Elements

FY01 – FY03

Technology Development

- Chem components
- Bio components

Insertion opportunity

FY01 - FY04

Systems Experimentation

- Implement, test, optimize
- Measure system performance:

FY01: external release

FY03, FY04: internal release

FY04 – FY05

Demonstration

- Military installation
- Based on experiments

Bio Sensor Needs

 Bio sensors are a key component of many defensive architectures.

 Today's bio sensors do not perform well enough to enable their use in complex architectures.

 Fixing this shortcoming requires both novel sensor technologies and a change in how we design and develop sensor systems.

Sensor Systems - Identification Mechanisms

Mass: Charge of fragments

Resonances, energy transitions

Sensor Systems – Reporting Techniques

Components of (Bio) Sensors

Readout Environmental Sample **Analyze** Collect Identify Prepare Report High volume • Unique / Minimal prep Strong Sensitivity throughput / cleansing unambiguous reporting Specificity signal result Collection of Speed Speed • Low Simple $1-10\mu$ Minimal • Live vs dead, background algorithms particles consumables pathogenic signal Robustness • High vs nonefficiency / to interferents Speed deadly low power Speed Multiplexed Multiplexed reporting ID • High Robustness efficiency / to interferents low power Wide operating range (temp,

himidity,...)

Bio Sensor Systems

Mass Spec Prototype Development

Hardware proof of concept

- Technology components:
 - MALDI ionization
 - TOF reflectron
- Successfully generates spectra of whole proteins.

- Agent signature library
- Stability of signature
- Instrument calibration
- Background signature characterization

- Signature quenching
- Algorithms for signature extraction
- Signature predictions
- Matrix modeling, optimization

Mass Spec Modeling

- Ionization process plays important role in system sensitivity and variability.
- Modeling effort is underway to guide system optimization, interpretation of output.

SIMBAD

- Purpose: To develop and demonstrate prototype advanced sensor systems that work. They must be:

 - optimized;well characterized;

reliable.

- Approach: New "way of doing business":
 - No stovepipes.

- Strong systems-engineering lead.
- Broad technical expertise.
 - End-to-end development.

Contacts & Other Interests

Contacts

Office coordination Amy E. Alving

Building protection tbd

Sensors
 Steve Buchsbaum, Millie Donlon

Other interests

- Bio surveillance systems
- Novel forensics
- Portal barriers for bio/chem
- Production detection